Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38668946

RESUMO

Thymus vulgaris, commonly known as thyme, is a plant renowned for producing monoterpenes. This study aimed to understand the effects of low-dose gamma radiation, specifically in the range of 1-5 Gy, on various traits of Thymus vulgaris, providing context on its importance in agricultural and medicinal applications. The research explored morpho-physiological, biochemical, and gene-expression responses in thyme plants under no gamma- and gamma-ray exposure conditions. The study revealed complex relationships between gamma-ray doses and plant characteristics. In particular, shoot and root lengths initially increased with low doses (1-3 Gy) but decreased at higher doses (5 Gy), suggesting a dose-dependent threshold effect. Similarly, shoot and root fresh weights displayed an initial increase followed by a decline with increasing doses. Biochemical parameters showed dose-dependent responses, with low to moderate doses (1-3 Gy) stimulating enzyme activities and high doses (5 Gy) inhibiting them. Gene expression analysis was focused on the following specific genes: thymol synthase, γ-terpinene synthase, and carvacrol synthase. Low to moderate doses increased the expression of these genes, resulting in increased production of bioactive compounds. However, higher doses had diminished effects or suppressed gene expression. Metabolite analysis demonstrated dose-dependent responses, with moderate doses enhancing secondary metabolite production, while higher doses provided limited benefits. These findings underscore the implications of using gamma radiation to enhance secondary metabolite production in plants and its potential applications in agriculture, medicine, and environmental science. The study emphasizes the potential of gamma radiation as an external stressor to influence plant responses and highlights the importance of understanding such effects in various fields.

2.
PLoS One ; 19(4): e0300615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568985

RESUMO

The majority of Iranian fig production is exported, making it one of the world's most well-known healthy crops. Therefore, the main objective of the current experiment was to investigate the effects of various types of organic fertilizers, such as animal manure (cow and sheep), bird manure (partridge, turkey, quail, and chicken), and vermicompost, on the nutritional status of trees, vegetative and reproductive tree characteristics, fruit yield, and fruit quality traits in dried fig cultivar ("Sabz"). According to the findings, applying organic fertilizers, particularly turkey and quail, significantly improves vegetative and reproductive characteristics. However, other manures such as sheep, chicken, and vermicompost had a similar effect on the growth parameters of fig trees. Additionally, the findings indicated that except for potassium, use of all organic fertilizers had an impact on macro and microelements such as phosphorus, nitrogen, and sodium amount in fig tree leaves. Also, based on fruit color analysis in dried figs, the use of all organic fertilizers improved fruit color. Moreover, the analyses fruit biochemical showed that the use of some organic fertilizers improved that TSS and polyphenol compounds such as coumarin, vanillin, hesperidin gallic acid and trans frolic acid. In general, the results indicated that the addition of organic fertilizers, especially turkey manure, led to increased vegetative productivity and improvement in the fruit quality of the rain-fed fig orchard.


Assuntos
Ficus , Frutas , Ovinos , Animais , Solo/química , Ficus/química , Irã (Geográfico) , Fertilizantes/análise , Esterco/análise , Estado Nutricional , Nitrogênio/análise
3.
Sci Rep ; 13(1): 15447, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723234

RESUMO

The highest quality pomegranate necessitates a tropical or subtropical environment for proper growth and development. This study evaluated two pomegranate cultivars including Rabab Poost Ghermez Neyriz (RPGN) and Makhmal Malas Shahreza (MMS) for physical traits, biochemical properties, and juice quality in their native locations as well as other warm and arid regions during two growing seasons (2019-2020 and 2020-2021) in Iran. The results showed that cultivars with the maximum redness (a*) were more likely to originate in cooler climates, and the cultivar's responses to changing climates were also different. According to pomegranate characteristics, cultivars in different regions had different fruit, aril, and skin weights. According to these findings, pomegranate fruits cultivated in other climates than the origin climate have a smaller edible fraction. The findings also demonstrate that pomegranate fruits cultivated in mountain climates have more significant biochemical parameters such as total phenol, anthocyanin content, antioxidant capacity, and vitamin C than those produced in desert environment settings. The increased titratable acidity (TA), total soluble solids (TSS), and pH values of pomegranates produced in origin climate than the warm environment; thus, suggest that changes in pomegranate cultivar origin had a clear impact on fruit juice quality. Environmental factors, such as wind speed, altitude, and annual precipitation, had a significant correlation with a* skin, TSS, fruit weight, aril weight, edible portion, pH, TA, phenol, antioxidants, and anthocyanin content.


Assuntos
Punica granatum , Antocianinas , Antioxidantes , Clima Desértico , Frutas , Fenol , Fenóis
4.
Sci Rep ; 13(1): 12142, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495658

RESUMO

One of the well-known medicinal plants in the Falcaria genus is Sickleweed. Falcaria species exhibit a high degree of genetic variability, posing challenges in the examination of genetic diversity due to the significant potential for hybridization and introgression among them. Utilizing morphological traits and molecular markers may prove to be a valuable approach in evaluating and harnessing germplasm, considering the current obstacles faced in breeding this medicinal herb. In 2021, fifteen Sickleweed populations were cultivated in pots under field conditions, employing a randomized complete block design with three replications. This aimed to assess genetic diversity and conduct marker-trait association analyses utilizing morpho-physiological characteristics and SSR markers. The Sickleweed populations displayed considerable genetic diversity across all traits. Through cluster analysis of traits and the utilization of the UPGMA method based on the Gower distance matrix, the population was classified into three distinct clusters. Upon examining all genotypes, 52 polymorphic bands were detected, with an average of 8.68 bands per primer. The average expected heterozygosity across all loci was 0.864, while the average PIC was 0.855. Molecular data analysis employing the Jaccard similarity index and UPGMA method revealed the division of Sickleweed populations into two major groups. Furthermore, the results of molecular variance analysis indicated that variation within the population exceeded that between populations. Thirty-two SSR fragments were found to be significantly associated with genomic regions controlling the studied traits, determined through the application of stepwise regression. Selection based on molecular markers offers a rapid method for breeding programs, with the genetic information obtained from these markers playing a crucial role. Therefore, alongside traits, selecting superior genotypes and populations of high value in breeding programs becomes feasible. The findings highlight that certain markers are linked to multiple traits, emphasizing the critical importance of this characteristic in plant breeding for the simultaneous improvement of numerous traits. The study's insights regarding markers hold potential for application in Sickleweed breeding programs.


Assuntos
Variação Genética , Repetições de Microssatélites , Genótipo , Repetições de Microssatélites/genética , Fenótipo , Melhoramento Vegetal
5.
PLoS One ; 18(6): e0287480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37343048

RESUMO

Sickleweed (Falcaria vulgaris) is the name of a species of annual, and perennial herbaceous plants of the genus Falcaria. Climate change could negatively influnces the performance of various plant species in plant kingdom. In this study, 15 different sickleweed populations from seven provinces of the country were collected based on an unbalanced nest design with 10 replications and the percentage of essential oil, types of chlorophyll, phenol, proline, protein, and carotenoids were measured on them. The results showed that there was a significant difference between populations at the level of one percent for the studied traits. The results of the mean comparison showed that populations Ard-Shaban and Qaz-Ilan in terms of the evaluated traits and especially the percentage of essential oil were at the upper of the studied samples and selected as suitable populations. In addition, populations Gilan-Deylaman and Kur-Gerger-e Sofla were also identified as superior populations in terms of studied traits by cluster analysis and principle component analysis (PCA). Since the high level of proline and biochemical and physiological traits in plants can play a role in plants' tolerance to stresses, therefore, populations with high values of these traits can be used in stress tolerance breeding programs. Therefore, in this study, populations Gilan-Deylaman and Kur-Gerger-e Sofla can be suitable populations for this purpose. In addition, the essential oil of this plant is used in the treatment of diseases, and therefore populations Ard-Shaban and Qaz-Ilan, which showed a high percentage of essential oil, can be used in breeding programs to increase the performance of this trait.


Assuntos
Óleos Voláteis , Melhoramento Vegetal , Fenótipo , Plantas
6.
Sci Rep ; 13(1): 2713, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792889

RESUMO

Ionizing radiations are a helpful technique and have improved financial potential in developing new and unique commercially important fruit tree varieties. The 'Yaghouti' grape cuttings were treated with 0 (control), 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 Gy gamma ray (γ) doses. The objectives of this study were to (1) investigate the effects of γ radiation on the survival rate, leaves, shoots, and root morphometric traits after γ irradiation; (2) Measurement of the 25, 50, and 75% lethal dose and 25, 50, and 75% growth reduction dose based on leaves, shoots, and root morphometric characteristics to estimate grape radiosensitivity; (3) Ultimately, determining the optimum dose of γ irradiation based biological responses (LD25, 50, 75 and GR25, 50, 75) in Yaghouti grape. The findings demonstrate that the lethal dose of the 'Yaghouti' was 18 Gy for LD25, 30 Gy for LD50, and 48 Gy for LD75, respectively. Furthermore, our findings showed that increasing the γ dose had a harmed ngative effect on vine growth, as evidenced by a decrease in plant height, root number, root volume, leaf area, aerial biomass, root biomass, and internode number of the 'Yaghouti' grape plants. Our results showed that between the aerial parts of vines, the leaf area and aerial biomass had higher radiosensitivity than plant height and other aerial parts of the plants based on data from GR25, GR50, and GR75. Moreover, GR studies of root characteristics revealed that root number and biomass root had higher radiation sensitivity than root volume. According to biological responses (LD25, 50, 75 and GR25, 50, 75) in the 'Yaghouti' grape, 30 Gy of γ radiation is the optimum dose for preliminary mutagenesis investigations.


Assuntos
Vitis , Raios gama , Relação Dose-Resposta à Radiação , Mutagênese , Tolerância a Radiação
7.
BMC Plant Biol ; 21(1): 494, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34706647

RESUMO

BACKGROUND: Abiotic and biotic stresses induce oxidative processes in plant cells that this process starts with the production of ROSs which cause damage to the proteins. Therefore, plants have increased their antioxidant activity to defend against this oxidative stress to be able to handle stress better. In this research, 14 different tea accessions in a randomized complete block design with two replications were evaluated in two normal and drought stress conditions, and their antioxidant activity was measured by DPPH-free radicals' assay and gene expression analysis. RESULTS: The results of gene expression analysis showed that the 100 and 399 accessions and Bazri cultivar had high values for most of the antioxidant enzymes, ascorbate peroxidase, superoxide dismutase, catalase, and peroxidase under drought stress conditions while the 278 and 276 accessions had the lowest amount of antioxidant enzymes in the same situation. Results showed that the IC50 of the BHT combination was 90.12 µg/ ml. Also, The IC50 of accessions ranged from 218 to 261 µg/ml and 201-264 µg/ml at normal and drought stress conditions, respectively. The 100 and 399 accessions showed the lowest IC50 under normal and drought stress conditions, while 278 and 276 accessions had the highest value for IC50. The antioxidant activity of tea accession extracts under normal conditions was ranged from 25 to 69% for accessions 278 and 100, respectively. While, the antioxidant activities of extracts under drought stress condition was 12 to 83% for accessions 276 and 100, respectively. So, according to the results, 100 and 399 accessions exhibited the least IC50 and more antioxidant activity under drought stress conditions and were identified as stress-tolerant accessions. However, 278 and 276 accessions did not show much antioxidant activity and were recognized as sensitive accessions under drought stress conditions. CONCLUSIONS: These results demonstrate that total phenol content, antioxidant activity, and the oxygen-scavenging system can be used as a descriptor for identifying drought-tolerant accessions.


Assuntos
Adaptação Fisiológica/genética , Antioxidantes/metabolismo , Desidratação , Estresse Oxidativo/fisiologia , Fenol/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Chá/genética , Chá/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Irã (Geográfico) , Folhas de Planta/metabolismo
8.
Cells ; 11(1)2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35011598

RESUMO

The LysM receptor-like kinases (LysM-RLKs) play a crucial role in plant symbiosis and response to environmental stresses. Brassica napus, B. rapa, and B. oleracea are utilized as valuable vegetables. Different biotic and abiotic stressors affect these crops, resulting in yield losses. Therefore, genome-wide analysis of the LysM-RLK gene family was conducted. From the genome of the examined species, 33 LysM-RLK have been found. The conserved domains of Brassica LysM-RLKs were divided into three groups: LYK, LYP, and LysMn. In the BrassicaLysM-RLK gene family, only segmental duplication has occurred. The Ka/Ks ratio for the duplicated pair of genes was less than one indicating that the genes' function had not changed over time. The BrassicaLysM-RLKs contain 70 cis-elements, indicating that they are involved in stress response. 39 miRNA molecules were responsible for the post-transcriptional regulation of 12 Brassica LysM-RLKs. A total of 22 SSR loci were discovered in 16 Brassica LysM-RLKs. According to RNA-seq data, the highest expression in response to biotic stresses was related to BnLYP6. According to the docking simulations, several residues in the active sites of BnLYP6 are in direct contact with the docked chitin and could be useful in future studies to develop pathogen-resistant B. napus. This research reveals comprehensive information that could lead to the identification of potential genes for Brassica species genetic manipulation.


Assuntos
Brassica napus/enzimologia , Brassica napus/genética , Simulação por Computador , Família Multigênica , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Tetraploidia , Motivos de Aminoácidos , Cromossomos de Plantas/genética , Códon/genética , Éxons/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Íntrons/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Repetições de Microssatélites/genética , Simulação de Acoplamento Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Seleção Genética , Estresse Fisiológico/genética
9.
Plants (Basel) ; 9(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092180

RESUMO

The autophagy-related genes (ATGs) play important roles in plant growth and response to environmental stresses. Brassica napus (B. napus) is among the most important oilseed crops, but ATGs are largely unknown in this species. Therefore, a genome-wide analysis of the B. napus ATG gene family (BnATGs) was performed. One hundred and twenty-seven ATGs were determined due to the B. napus genome, which belongs to 20 main groups. Segmental duplication occurred more than the tandem duplication in BnATGs. Ka/Ks for the most duplicated pair genes were less than one, which indicated that the negative selection occurred to maintain their function during the evolution of B. napus plants. Based on the results, BnATGs are involved in various developmental processes and respond to biotic and abiotic stresses. One hundred and seven miRNA molecules are involved in the post-transcriptional regulation of 41 BnATGs. In general, 127 simple sequence repeat marker (SSR) loci were also detected in BnATGs. Based on the RNA-seq data, the highest expression in root and silique was related to BnVTI12e, while in shoot and seed, it was BnATG8p. The expression patterns of the most BnATGs were significantly up-regulated or down-regulated responding to dehydration, salinity, abscisic acid, and cold. This research provides information that can detect candidate genes for genetic manipulation in B. napus.

10.
Plants (Basel) ; 8(9)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461870

RESUMO

In this study, the positive role of hydrogen peroxide (H2O2) pretreatment in mitigating the adverse impacts of seawater stress has been evaluated in two wheat (Triticum aestivum L.) cultivars, namely Gemmiza 11 as a salt-sensitive and Misr 1 as a salt-tolerant cultivar, with contrasting phenotypes in response to the salinity stress. Under normal conditions, wheat seeds eustress with H2O2 have shown significant effects on the improvement of plant growth parameters, such as dry weight and root and shoot lengths. Under salt stress conditions, seeds eustress with H2O2 have shown a reduction in damage to plant growth and physiological parameters as compared to the seeds kept as un-primed in both wheat cultivars. In addition, eustress of seeds with H2O2 has induced an increment in the pigments content, proline level and mineral uptake (K+, Ca2+ and Mg2+). Moreover, seeds eustress with H2O2 have shown significant decrement in Na+ content uptake in plants and that subsequently reduced lipid peroxidation. Seawater stress has increased the activity of the antioxidant system based on catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) in both cultivars, except POD in Gemmiza 11. Similarly, the application of H2O2 has further enhanced the activity of the antioxidant system in stressed plants and this enhancement of the antioxidant system further reduced Na+ content in plants and subsequently increased the growth parameters. Results of inter-simple sequence repeat (ISSR) markers have shown clear differentiation among the treatments and have provided strong evidence in support of the hypothesis proposed in this study that H2O2 eustress improves seed tolerance and enhances plant growth parameters under seawater stress.

11.
3 Biotech ; 9(5): 199, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31065499

RESUMO

Metal tolerance proteins (MTPs) play an important role in the transport of metals at the cellular, tissue and whole plant levels. In the present study, 11 MTP genes were identified and these clustered in three major sub-families Fe/Zn-MTP, Zn-MTP, and Mn-MTP, and seven groups, which are similar to the grouping of MTP genes in both Arabidopsis and rice. Vitis vinifera metal tolerance proteins (VvMTP) ranged from 366 to 1092 amino acids, were predicted to be located in the cell vacuole, and had four to six putative TMDs, except for VvtMTP12 and VvMTP1. The VvMTPs had putative cation diffusion facilitator (CDF) domains and the putative Mn-MTPs also had zinc transporter dimerization domains (ZD-domains). V. vinifera Mn-MTPs had gene structures and motif distributions similar to those of the Fe/Zn-MTP and Zn-MTP sub-families. The upstream regions of VvMTP genes had variable frequencies of cis-regulatory elements that could indicate regulation at different developmental stages and/or differential regulation in response to stress. Comparison of the VvMTP coding sequences with known miRNAs found in various plant species indicated the presence of 13 putative miRNAs, with 7 of these associated with VvMTPs. Temporal and spatial expression profiling indicates a potential role for VvMTP genes during growth and development in grape plants, as well as the involvement of these genes in plant responses to environmental stress, especially osmotic stress. The data generated from this study provides a basis for further investigation of the roles of MTP genes in grapes.

12.
Physiol Mol Biol Plants ; 25(1): 59-69, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30804630

RESUMO

Abiotic stresses, such as drought, can induce different morphological, physiological and molecular responses in the tea plants. Since there have not been any experiments on the screening of tea genotypes in terms of drought tolerance, this study was conducted to screen the drought resistance of 14 tea clones of Iran germplasm in a randomized complete block design with three replications, separately in two stressed and non-stressed conditions at Fashalam tea station. The results of grouping the clones under normal and stress conditions and comparing their results with the results of mean comparison of the agronomic and biochemical traits showed that in all cases, clones 100, Bazri and 399 were in the group that can be identified as the drought-tolerant group. Also, the results showed that in the most cases, clones 278, 276 and 285 were placed in a group that had low values for all of the traits and could be considered as a group that are susceptible to drought stress.

13.
Protoplasma ; 256(1): 279-290, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30083789

RESUMO

Biotic and abiotic stresses cause special defense reactions in plant organs, which after a series of reactions, these stresses produce secondary metabolites. The effect of ultraviolet radiation on the expression of key genes involved in the biosynthesis of secondary metabolites (Phenylalanine ammonia lyase (PAL), Hydroxymethylglutaryl-CoA reductase (HMG-CoA reductase), GPP synthases, Deoxyribonino heptulosinate 7-phosphate synthase (DAHP), and Deoxy Xylose Phosphate Synthase (DXS)), and the association of these genes with different amounts of secondary metabolites (phenol, terpene, flavonoids, anthocyanins, alkaloids, lycopene, and beta-carotene) was investigated in this study. The results of this study showed that the application of UV-B stress significantly increased the expression of GPPs, HMG-CoA reductase, DXS, DAHPs, and PAL genes compared to the control plants. The expression of two key genes involved in the biosynthesis of phenylpropanoids, including DAHPs and PAL, increased with UV-B stress, and the highest expression was related to the PAL gene. The results revealed that UV-B stress caused a significant increase in total levels of terpenoids, phenols, flavonoids, anthocyanins, alkaloids, beta-carotene, and lycopene. The highest relative expression of all genes was obtained in treatment A (UV-B radiation for 1 h), while in treatment B (UV-B radiation for 2 h), no significant changes were observed in the expression of the genes.


Assuntos
Antocianinas/metabolismo , Cuminum/química , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fenilalanina Amônia-Liase/metabolismo , Raios Ultravioleta
14.
J Plant Physiol ; 230: 101-108, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30368030

RESUMO

Thymus vulgaris L. (Lamiaceae), a well-known aromatic medicinal herb, has many important essential constituents in its oil, including γ-terpinene, carvacrol, thymol, and p-cymene. Gibberellins comprise hundreds of components, which regulate several various growths and underlying developmental processes, such as cell division and elongation, shoot elongation, seed germination, and gene expression. In this study, we investigated the influence of sprayed gibberellic acid (GA3) treatments on the internode length, leaf morphology, length of new shoot, expression of monoterpene synthase genes and monoterpenes content during two plant growth stages. Our results showed that increasing of internode length was a clear effect of GA3 that was varied with internode position. The results also showed that all internodes displayed a dramatic increase in the highest concentration of GA3. Also, the foliar application of GA3 resulted in not only an increased expression level of monoterpene synthase genes, but also the improved production of a monoterpene, especially in the moderate concentration of GA3 that they were up-regulated. In the lowest GA3 concentrations, relative expression levels were similar or lower than the control plants and a notable downregulation in those genes was observed in the application of the highest concentration of GA3 rather than the moderate concentrations. Overall, the expression of two out of five monoterpene synthase genes, TPS and CYP71D181, showed a correlation with the level of γ-terpinene and carvacrol, respectively, indicating that they are regulated at the transcriptional levels.


Assuntos
Giberelinas/farmacologia , Liases Intramoleculares/genética , Reguladores de Crescimento de Plantas/farmacologia , Thymus (Planta)/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Liases Intramoleculares/metabolismo , Thymus (Planta)/efeitos dos fármacos , Thymus (Planta)/enzimologia , Thymus (Planta)/genética , Regulação para Cima/efeitos dos fármacos
15.
Physiol Mol Biol Plants ; 23(3): 529-544, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28878492

RESUMO

Changes in the antioxidant enzymes, lipid peroxidation, sodium and potassium, chlorophyll, H2O2 and proline content were monitored in the leaves of 42 rice varieties which were not yet well-documented for the salinity tolerance under different salinity levels. The tolerant varieties (FL478, Hassani, Shahpasand, Gharib and Nemat) showed signs of tolerance (lower Na+/K+ ratio, high proline accumulation, less membrane damage, lower H2O2 production, and higher superoxide dismutase and catalase activity) very well. The positive relationship between the level of salt tolerance and the amount of proline accumulation in the rice varieties support the important role of proline under the salt stress. The varieties were genotyped for 12 microsatellite markers that were closely linked to SalTol QTL. The results of association analysis indicated that RM1287, RM8094, RM3412 and AP3206 markers had the high value of R2 for the regression models of the studied traits. It shows the important role of SalTol in controlling physio-biochemical traits. The results can be used in the future marker assisted selection (MAS) directly, if the results are confirmed.

16.
Environ Sci Pollut Res Int ; 24(8): 7184-7196, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28097484

RESUMO

Salinity stress is the most important and common environmental stresses throughout the world, including Iran. The aim of this study was to investigate the expression of several important genes involved in the salinity tolerance of the rice cultivars differing in salt sensitivity. In this research, the expression of four mitochondrial genes, H2O2, malondialdehyde (MDA), proline, sodium, potassium and superoxide dismutase (SOD), was measured in Iranian rice cultivars and two well-known international varieties as checks in response to 100 mM salt stress. The results show that the activity of SOD in the tolerant cultivars is much higher than in the susceptible ones under saline conditions (100 mM NaCl). The study of the gene expression in the tolerant and sensitive cultivars also showed that the expression of the genes increased in the early hours of the stress, with the exception of the OsGR1. Moreover, the amount of the expression in the tolerant cultivars was far more than the susceptible ones. The result of this study showed that the function of a set of antioxidant enzymes can lead to detoxification of the reactive oxygen species, so in order to better understand ROS scavengers, a comprehensive study on the antioxidant system should be conducted.


Assuntos
Oryza , Tolerância ao Sal , Plantas Tolerantes a Sal , Cloreto de Sódio/farmacologia , Transcriptoma/efeitos dos fármacos , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia
17.
3 Biotech ; 6(1): 61, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28330131

RESUMO

For fast and easy isolation of inhibitor-free genomic DNA even from the toughest plant leaf samples, including those high in polyphenols and polysaccharides, a protocol has been developed. To prevent the solubility of polysaccharides in the DNA extract, high salt concentration (1.4 M) was used in the extraction buffer. Polyvinylpyrrolidone (PVP) was used for the removal of polyphenols as polymerase chain reaction (PCR) inhibitors. Proteins like various enzymes were degraded by proteinase K and removed by centrifugation from plant extracts during the isolation process resulting in pure DNA and RNA ready to use in downstream applications including PCR, quantitative polymerase chain reaction (qPCR), ligation, restriction and sequencing. This protocol yielded a high molecular weight DNA and RNA isolated from leaves and roots of recalcitrant plants which was free from contamination and color. The average yields of total RNA from roots and shoot of Betula and Grape ranged from 285 to 364 ng/µl with A260/A280 between 1.9 and 2.08. The RNA isolated with this protocol was verified to be suitable for PCR, quantitative real-time PCR, semi-quantitative reverse transcription polymerase chain reaction, cDNA synthesis and expression analysis. This protocol shown here is reproducible and can be used for a broad spectrum of plant species which have polyphenols and polysaccharide compounds.

18.
3 Biotech ; 6(1): 99, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28330169

RESUMO

Drought stress is a severe environmental constraint to plant productivity. In this study, gene expression of WRKY1 and EREBP1 genes and activity of two enzymes were investigated in two genotypes, G9 (as resistance) and G12 (as susceptible) of 10 days-old lemon balm seedlings. Experiments were done according to factorial design on the base of completely randomized design with three replications for expression analysis and enzyme assays. Seedlings were cultured in MS medium suspensions, including 0, 3, 6, 12 and 15 % w/v PEG 6000. Leaf samples were subsequently collected at 0, 3, 6, 24, 48, 72 h after culture. According to the results of the enzyme assay, SOD activity in resistant genotype was more than in sensitive one. POD activity was high in G9 in severe drought condition and in G12 this activity was increased at initial times of drought stress. The survey results revealed that the expression levels of both genes, EREBP1 and WRKY1, in G9 variety were more than G12, and in this respect we can say that the G9 variety is more resistant to drought.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...